Библиотека Диа-Клуба

Глава 2

Сахарный диабет и системы автоматического управления

       Из всего сказанного выше совершенно очевидным становится предположение о наличии надклеточных регуляторных механизмов, работа которых должна быть направлена на поддержание постоянной концентрации глюкозы в крови. И такие механизмы есть. Более того, напрашивается и схема такого регуляторного механизма. Это система автоматического управления (регулирования) с отрицательной обратной связью ( в дальнейшем – САУ)
       Работа таких САУ с отрицательной обратной связью основана на возвращении выходного параметра системы к какому-то устойчивому значению в случаях, когда этот параметр отклонился от этого значения в ту или иную сторону. Этим такие системы отличаются от систем с положительной обратной связью, имеющих цель вывести систему из равновесия и ввести ее в режим возбуждения.
       При отклонении выходного параметра (объекта регулирования) систем с отрицательной обратной связью формируется сигнал рассогласования, величина и знак которого зависит от того, в какую сторону отклонился объект регулирования ( увеличения или уменьшения) и от самой величины этого отклонения. На основе этого сигнала рассогласования формируются управляющие воздействия, стремящиеся вернуть систему в устойчивое состояние (вернуть объект регулирования к заданной величине). Величина и знак этих управляющих воздействий также зависит от величины и знака отклонения объекта регулирования от заданной величины. Другими словами, такие системы постоянно «тормозят» отклонения объекта регулирования от нужной величины, препятствуют таким отклонения. В этом и заключается смысл «отрицательности» таких систем.
       Я могу с уверенностью сказать, что поддержание заданного уровня глюкозы крови происходит под управлением такой САУ. Объектом регулирования является уровень глюкозы крови в норме составляющий 3.3-5.5 ммоль/л. Управляющими воздействиями являются два гормона поджелудочной железы: инсулин и глюкагон. При тенденциях к повышению уровня глюкозы крови в качестве управляющего воздействия выступает инсулин, действие которого приводит к понижению этого уровня, «тормозит» его, оказывает «отрицательное» воздействие на это повышение. В случае тенденций к понижению уровня глюкозы, управляющим воздействием является глюкагон, действие которого приводит к повышению уровня глюкозы, оказывает «отрицательное» воздействие на это понижение. В этом и есть смысл «отрицательности» действия этих гормонов в составе системы управления с отрицательной обратной связью. По сути дела, процесс регулирования уровня глюкозы крови, это процесс противоположной по знаку работы этих двух гормонов, которых называют антагонистами. Постоянный уровень глюкозы крови является результатом оптимального баланса между ними.
       Инсулин является гормоном, обеспечивающим приток глюкозы из внеклеточного пространства, тогда как глюкагон главным образом влияет на ее поступление в это пространство. Очевидно, если концентрация глюкозы во внеклеточном пространстве остается постоянной во время колебаний ее потока, то это является следствием как равного поступления глюкозы в это пространство, так и равного ухода из него. Подобное равновесие возможно лишь в условиях тесного взаимодействия глюкагона и инсулина, взаимодействия альфа и бета клеток, взаимодействия, контролируемого САУ. С точки зрения САУ инсулин и глюкагон являются антагонистами, поскольку имеют прямо противоположное управляющее воздействие. Но с физиологической точки зрения инсулин и глюкагон антагонистами не являются. Просто каждый из них выполняет свою работу и выполняет в тесном взаимодействии друг с другом.

       Как и в любой сложной системе автоматического управления должен существовать своего рода «счетно-решающее устройство», анализирующее показания датчиков, ход процессов и дающее команды на формирование того или иного управляющего воздействия. Предполагаю, что таким устройством является центральная нервная система, хотя, конечно, принципиальная схема и алгоритмы работы этого «устройства» мне неизвестны.

       Взаимодействие управляющих воздействий (инсулин и глюкагон) может происходить и напрямую между собой. Так, вследствие особого типа кровообращения в островках Лангерганса поджелудочной железы, инсулин может непосредственно угнетать секрецию глюкагона альфа-клетками, независимо от уровня глюкозы крови. В этом проявляется блокирующее воздействие инсулина на глюкагон, что важно для понимания многих явлений, с которыми постоянно сталкивается диабетик. К примеру, для понимания явления гипогликемии.

       Как и в любой такой системе, уровень глюкозы крови может колебаться около какого-то уровня. Это колебание обусловлено определенной инертностью биологических систем в отличие от, к примеру, электронных. Но в здоровом организме диапазон этих колебаний должен лежать в пределах указанного выше диапазона натощак.

       Надо сказать, что функция этой САУ не ограничивается работой лишь в нормальной штатной обстановке. В ней существует и аварийная «схема защиты» от опасно низкого уровня глюкозы в крови, аналогичная, по своей сути, системе «увода с опасно низкой высоты», которая существует на современных самолетах.
Аварийное снижение концентрации глюкозы в крови приводит к реакции на это снижение нейронов гипоталамуса и запуску гормональной реакции на гипогликемию. Сигналом для нейронов гипоталамуса может служить либо падение концентрации глюкозы ниже некоторого порогового уровня, либо слишком большая скорость снижения концентрации глюкозы. Снижение концентрации глюкозы от нормального уровня до уровня гипогликемии может и не вызвать секрецию контринсулярных гормонов, тогда как резкий переход от гипергликемии (16,0—22,0 ммоль/л) до нормогликемии (5,5—8,0 ммоль/л) стимулирует секрецию гормонов, препятствующих дальнейшему снижению концентрации глюкозы. Проще говоря, плавное снижение уровня глюкозы в ряде случаев может не вызвать срабатывание этой «схемы защиты» (такое может наблюдаться при переколе длинными инсулинами), но может вызвать такое срабатывание при переколе короткими и, особенно, ультракороткими инсулинами, когда уровень глюкозы падает резко.
       В первую очередь усиливается секреция адреналина, норадреналина и глюкагона, затем — кортизола и СТГ. Участие многих гормонов в реакции на гипогликемию позволяет здоровому организму очень точно отрегулировать уровень глюкозы, причем в разнообразных жизненных ситуациях, под воздействием разнообразных жизненных факторов. Т.е. при исправной и работоспособной САУ. К сожалению, у диабетика именно отказ этой САУ затрудняет это точное регулирование
       Эффект контринсулярных гормонов проявляется уже в первые минуты после того, как гипоталамус распознает низкий или быстро снижающийся уровень глюкозы, и длится 8—12 ч. Образно говоря, в этом случае наш «самолет» увеличивает угол тангажа (задирает нос), чтобы вернуться к нормальной высоте полета. При этом он может пройти нормальную высоту и дальше стремиться вверх. Но в этом случае включится инсулярное плечо САУ, которое застабилизирует «самолет» именно на нужной нормальной высоте. Но у диабетика это, как правило, не происходит, поскольку именно инсулярное плечо САУ находится в отказе. Это приводит к дальнейшему росту «высоты» ( уровня глюкозы крови), именуемое постгипогликемической гипергликемией или «откатом» или эффектом Сомоджи. Как противостоять этому явлению, мы рассмотрим позже.
       Уже через 1—3 года после клинического проявления инсулинозависимого сахарного диабета секреция глюкагона в ответ на «аварийную» гипогликемию заметно снижается. На протяжении последующих 2—3 лет секреция глюкагона в системе аварийной защиты постепенно уменьшается и, в конце концов, прекращается. Позднее (через 10 и более лет) снижается также секреция адреналина, причем даже у больных без диабетической нейропатии. Другие гормональные реакции почти не нарушаются. Больные со сниженной или отсутствующей секрецией глюкагона и адреналина в ответ на гипогликемию теряют способность ощущать ее предвестники. У таких больных повышен риск гипогликемической комы во время интенсивной инсулинотерапии.
       Проще говоря, при большом стаже СД1 у человека отказывает и эта схема защиты, и он становится беззащитным при гипогликемиях. Организм просто теряет способность распознавать их и адекватно реагировать. Следует сказать и то, что уровень гипогликемии может быть разным. Гипогликемия, это не только тогда, когда уровень глюкозы падает ниже 3.3 ммоль/л. Этот уровень зависит и от того, на каких сахарах живет организм, к каким привык и какие считает за «норму». Надо учитывать то, что головной мозг у больных сахарным диабетом адаптирован к постоянной гипергликемии, поэтому симптомы гипогликемии могут проявляться и при концентрации глюкозы 6—8 ммоль/л. Но это у тех, кто привык жить на высоких уровнях глюкозы крови, у кого головной мозг и САУ адаптировались к этим высоким уровням. Об этом мы тоже поговорим позже, когда будем рассматривать практические шаги по точной инсулинотерапии. Да и вообще, гипогликемия, это не только дрожание рук-ног, потеря сознания и т.д. Она может проходить и бессимптомно ( т.н. «скрытая гипогликемия), но «схема защиты» ее улавливает вполне реально.

       В свете такой концепции сахарный диабет можно рассматривать, как отказ САУ. Причем, отказ ее инсулярного плеча, которое и является тем самым «слабым звеном». Хотя бывают случаи отказа и контринсулярного (глюкагонового) плеча САУ, приводящие, как бы к «диабету наоборот», когда проблемой становится не высокий, а низкий уровень глюкозы крови. Но мы эти проблемы не рассматриваем.

       Кстати, уместно задаться вопросом: а зачем эта САУ регулирует верхний уровень глюкозы в крови ? С нижним уровнем все понятно. Он регулируется для того, чтобы обеспечить энергообеспечение организма и, в первую очередь, ЦНС. Но зачем регулировать верхний уровень ? Ведь с точки зрения формальной логики – чем больше, тем лучше. Да, с точки зрения энергетики, это так. Но человеческий организм, как система, «сконструирован» так, что его «конструкция» должна соответствовать каким-то конструктивным параметрам. Иначе она просто не выдержит «эксплуатации». Ну, представьте себе, что по жилам потечет «сахарный сироп» вместо крови. Кровеносная система и органы, которые она снабжает всем необходимым, просто не выдержат такой «эксплуатации». В этом случае Конструктор должен был бы сконструировать совсем другой «механизм», нежели тот, который он сконструировал и задался определенными параметрами. Поздние осложнения диабета как раз и являются следствием такой «эксплуатации», эксплуатации на параметрах, не соответствующих самой конструкции, эксплуатации на запредельных параметрах. В нашем случае – на запредельной концентрации глюкозы в крови.

       Поскольку мы имеем дело со сложнейшей биологической системой, перечень возможных отказов может быть очень большим, и все они еще не изучены до конца. К сожалению, Великий Конструктор не оставил нам подробной принципиальной схемы этой системы. Вот поиском этой схемы и занимается наука. И эта работа проводится в тиши лабораторий и НИИ профессионалами высочайшего уровня, а не на каких-то шарлатанских сайтах, в подворотнях разных магов и исцелителей, не в горах Тибета и т.д. Вот когда будет найдена эта схема, во всей ее «красе» и многообразии, вот тогда и будет найдено истинное исцеление от сахарного диабета.

       У здоровых людей, потребляющих смешанную пищу, секреция глюкагона на протяжении дня колеблется в очень узких пределах. Таким образом, относительно постоянный уровень глюкагона отличается от уровня инсулина, претерпевающего отчетливые колебания при приеме смешанной пищи. Нас, диабетиков, больше удовлетворило бы обратное положение дел, когда уровень инсулина колебался бы в более узких пределах. Тогда решение задачи компенсаторной инсулинотерапии решался бы проще. Но, увы … Хотя, если бы было наоборот, то мы бы, возможно, столкнулись бы с «диабетом наоборот», когда проблемой стал бы не высокий, а низкий сахар. А это намного опасней.